Enzymes from Fungal and Plant Origin Required for Chemical Diversification of Insecticidal Loline Alkaloids in Grass-Epichloë Symbiota
نویسندگان
چکیده
The lolines are a class of bioprotective alkaloids that are produced by Epichloë species, fungal endophytes of grasses. These alkaloids are saturated 1-aminopyrrolizidines with a C2 to C7 ether bridge, and are structurally differentiated by the various modifications of the 1-amino group: -NH2 (norloline), -NHCH3 (loline), -N(CH3)2 (N-methylloline), -N(CH3)Ac (N-acetylloline), -NHAc (N-acetylnorloline), and -N(CH3)CHO (N-formylloline). Other than the LolP cytochrome P450, which is required for conversion of N-methylloline to N-formylloline, the enzymatic steps for loline diversification have not yet been established. Through isotopic labeling, we determined that N-acetylnorloline is the first fully cyclized loline alkaloid, implying that deacetylation, methylation, and acetylation steps are all involved in loline alkaloid diversification. Two genes of the loline alkaloid biosynthesis (LOL) gene cluster, lolN and lolM, were predicted to encode an N-acetamidase (deacetylase) and a methyltransferase, respectively. A knockout strain lacking both lolN and lolM stopped the biosynthesis at N-acetylnorloline, and complementation with the two wild-type genes restored production of N-formylloline and N-acetylloline. These results indicated that lolN and lolM are required in the steps from N-acetylnorloline to other lolines. The function of LolM as an N-methyltransferase was confirmed by its heterologous expression in yeast resulting in conversion of norloline to loline, and of loline to N-methylloline. One of the more abundant lolines, N-acetylloline, was observed in some but not all plants with symbiotic Epichloë siegelii, and when provided with exogenous loline, asymbiotic meadow fescue (Lolium pratense) plants produced N-acetylloline, suggesting that a plant acetyltransferase catalyzes N-acetylloline formation. We conclude that although most loline alkaloid biosynthesis reactions are catalyzed by fungal enzymes, both fungal and plant enzymes are responsible for the chemical diversification steps in symbio.
منابع مشابه
Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë
The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for "fescue toxicosis" in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected r...
متن کاملRegulation of a Chemical Defense against Herbivory Produced by Symbiotic Fungi in Grass Plants
Neotyphodium uncinatum and Neotyphodium siegelii are fungal symbionts (endophytes) of meadow fescue (MF; Lolium pratense), which they protect from insects by producing loline alkaloids. High levels of lolines are produced following insect damage or mock herbivory (clipping). Although loline alkaloid levels were greatly elevated in regrowth after clipping, loline-alkaloid biosynthesis (LOL) gene...
متن کاملGene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum.
Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1,...
متن کاملVariation in the expression of ergot alkaloids between individual tillers of perennial ryegrass
Epichloë fungal endophytes of cool season grasses are well-known to produce a range of alkaloids of benefit to the host. Some of these compounds are advantageous to agriculture due to qualities that promote pasture persistence (e.g., the loline class of alkaloids confer insect protection) while others are detrimental to the well-being of grazing livestock. The ergot alkaloids (e.g., ergovaline)...
متن کاملBiosynthetic precursors of fungal pyrrolizidines, the loline alkaloids.
Loline alkaloids are saturated pyrrolizidines with a substituted 1-amino group and an oxygen bridge between C2 and C7, and are insecticidal metabolites of plant-symbiotic fungi (endophytes). Cultures of the endophyte, Neotyphodium uncinatum, incorporated labeled L-proline and L-homoserine into the 1-aminopyrrolizidine, N-formylloline. The A-ring carbons C1-C3 and the N1 were derived from L-homo...
متن کامل